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ABSTRACT

In the design of space-quallflable laser systems for ranging and altlmetry, such
as NASA's Geodynamic Laser Ranging System (GLRS), the transmitter must be
kept small, powerful yet efficient, andmust consist of as feweomponents as
possible. This paper focuses on a novel preampllfler design that requfrds-rio
external beam-steerlng optics, yielding a compact component with simple
alignment procedures. The gains achieved are comparable to multlpass zigzag
amplifiers using two or more sets of external optics for extra passes through
the amplifying medium.
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Introduction

In the design of dlode-pumped laser system candidates for space-based laser

ranging and altimetry projects such as the Geoscience Laser Ranging System

every viable idea for decreasing size, weight, and energy requirements of the

laser systems is sought. The fundamental pulsewldths are currently required

to be less than 100 ps at a 40 pulse per second repetition rate due to the

resolution and integration time requirements of proposed streak tube

data-taking systems[ 1]. This paper reports on a unique preamplifier design

which satisfies the above requirements, and is suitable as the first amplifier

stage following a laser of I mJ output.

Of the laser amplifier geometries studied, the zigzag amplifiers display the best

over-all extraction efficlencies and temperature stabilities required for space. A

multipass scheme is commonly used to achieve high gain. However, extra

optics and space to fold the beam is required. An example of a high gain, slab

amplifier is the 62 dB multipass zigzag amplifier built by Kane, Kozlovsky, and

Byer[2] in 1986 employing external optics for four complete round trips. Our

application requires an amplifier of smaller scale, with attendant smaller gain

and temperature stability features. Chart[3] reports on a zigzag amplifier

employing only one transmissive face for both the pulse's entry and exit. The

design is intended for space-based altimetry but also requires extra hardware

to increase the gain length. By studying pros and cons of zigzag geometries we



have developed a slmilar design that keeps the amplified pulse in the gain

medium as long as posslble but requires no addltional hardware. A method for

designing an Alternating Precessive Slab (APS) Amplifier is presented.

General Parameters

A rectangular path was chosen by shortening a slde of a square. By sending

the beam in off-diagonal, shown in Flg. 1, a 32 cm long multipass trace is

produced inside of a Nd:YAG slab. All angles of incidence In the medium are

45 ° and use Total Internal Reflection (TIR) properties. Each llne inside the slab

represents the center of a gausslan beam which has a cross sectional area of

A - ncoz, (1)

where co is the eoRimated beam waist entering the medium from a short-pulse

(100 ps) laser. For minlmum overlap of the pulse in the gain medium, we

impose the condition

d > 2cocos(45°), (2)

where d represents the distance between beam centers on any of the four

reflective faces. Equation (2) must be followed In order to keep the internally

reflecting pulse from occupying any of the neighboring beam's volume. If the

distances between neighboring, parallel lines represent the beam centers and

are all a distance of exactly 200 apart, then in two dimensions the total area of

the slab is swept through twice before the pulse leaves the cavity. Given the

above geometrical parameters, it Is possible to design an amplifier for our

needs.
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In the absence of divergence, the entry and exit faces would be the same

diameter as the input beam diameter for maximum extraction efficiency.

However, it is necessary to account for beam spreading within the medium.

For a cylindrical rod amplifier, Degnan[4] identifies a trade-off between

amplifier extraction efficiency and beam quality for rod amplifiers. Phase or

amplitude fluctuations can be triggered by diffraction effects caused by the

aperture-radlus to beam-walst ratio. Any one of these fluctuations can lead to

self-focusing In the rod at high pulse powers.

The thickness of the slab determines the entrance and exit aperture diameters.

By choosing a thickness of t = 0.21 cm, our aperture radius is r = t/2 = 0.105

cm. Since the spatial pulse shape will grow upon amplification, the desired

ratio should be slightly greater than unity, about 1.05, where

Then t = 0.21 cm and co = 0.20 era. To allow for this extra "room" between

neighboring pulses and the entry/exit apertures, equation (2) is replaced with

d :" t cos(45°), (4)

where d = 0.297 cm.

The slab, which is a 0.8% doped Nd:YAG and lases at 1064 nm, is pumped at

809 nm from the four polished sides, A, A(2), and both B's, with linear laser

diode arrays. See Fig. 1 and 2. By matching the diode array widths to those of

the pumping faces of the slab amplifier, symmetrical temperature distributions

3



across the x-y plane are formed, a common characteristic of zigzag geometries.

The temperature/energy analysis will be presented later. The coatings will be

antl-reflective (AR) for 809 nm on the pumping faces, and AR for 1064 nm on

the entry/exit faces. An 8 x 8 cm square model was assembled with

silver-coated microscope slides to represent the sides of the rectangle. The

path in the simulated crystal was not destroyed when the opposing optical

faces were non-paraUel by about 1.0°. With the opposing faces of the crystal

not exactly parallel, parasitic oscillations in the x-y plane can be reduced.

Furthermore, the beam retained the same gaussian shape it possessed before

entering the test cavity. The top and bottom faces will have a frosted finish in

order to be non-reflectlve and supply a good heat sink. Fig. 3. A brief analysis

of parasities is covered later.

Example Design

Due to the chosen geometry, the number of paths, N, in the x and y directions

are equal. The location of the exit face, holding the position of the entry face

constant, alternates between opposite "corners" for odd and even N's. The

length of each side is calculated from Table 1.

The emitting facets of the chosen diodes are 10 mm wide by 0.3 mm high. The

pump light emerging from these apertures is divergent by 0(xyl = I 0 ° and 0(z_ =

35 ° respectively, with the xy plane being the same as that of the slab in Fig. 2.
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From Table I, it is found that N = 9 allows each pump face to have enough area

for the 00__diverging light to couple into the slab. This forces each of the pump

faces to be slightly wider than 1 cm. Fig. 3 shows the parameters for an N = 8

slab as an example. Coupling of the 0_z_light is accomplished by using

cylindrical glass rods 3 mm in diameter, (Suprasll from Heraeus Amersfl), as

colIlmating lenses. These rods are fire-polished fused sillca with a

transmission of over 95% at _. = 809 nm. By varying the diode to rod distance,

a 2 mm thick beam can be maintained for more than 4 centimeters. A 3 mm

diameter rod seemed to work the best in our tests. Other techniques were

considered, Including fiber optic coupling. In the first version of the amplifier,

uncoated rods will be used, however AR coatings on the glass rods can reduce

pumping losses even more.

The total slab volume, after finding the even or odd parameters, is found by

The volume determines the pumping requirements of the diodes. Using d =

0.297 cm and the data found in Table 1 for N=9 In equ. (5) a volume of V =

0.a33 cm a is computed. The path length Inside the medium, or the gain-path

length Lp, can be found by summing the paths in the slab, or

L.- ELx + EL, (6)

where Lx and Ly represent the distance traveUed by the pulse in the x and y

directions. Recalling that the beam centers are a distance t apart, then
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L,_ 1)+i (it 
is the total galn-length inside the crystal. Following the injected pulse's path in

Fig. 2, we see in both the vertical and horizontal axes, traces 1 - 8 and a - h

respectively, the order of the paths alternate from side to side. Due to this

alternation and apparent precession of rectangular paths, the design is referred

to as the Alternating Precessive Slab Amplifier, or the APS Amplifier.

Numerical Analysis of an N = 9 APS Amplifier

Degnan[5] notes that the saturation energy density for sub-nanosecond

pulsewidths is

hv

- 2oL(v - v0)

where o is the stimulated emission cross section, v is the ampllfylng pulse

center frequency, Vo is the resonant frequency of the gain medium and L(v - v0)

is the Lorentzian profile given by

(8)

1

L(V-Vo) - (V__o/2 . (9)
1 - \-_f/

The lifetime broadening of the upper and lower Nd laslng levels is ?_b or

1

Y,_,"_(?. + ?b), (10)

where 7, and ?b are the upper and lower transition rates respectively. The

injection of a 100 ps pulse from a diode-pumped, injection-locked, Nd:YAG ring

laser is assumed and v = v0. The saturation energy density is then
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h'v I

D,,, = 2o' (11)

where v_ = 2.82 x I014 Hz Is the Nd:YAG lasing frequency at 1064 nm.

The Nd ion density of the Nd:YAG slab Is Ni = 1.38 x I0 =° lons/em a. The total

pump energy absorbed In the 4Fa/2 Nd upper lasing level is then

ed- n,n2n,n,npyor,4 (12)

where rh = 0.9 Is the optical coupling efficiency Into the slab, _1== 0.95 ls the

absorption efficiency, rh = 0.76 ls the color efficiency or the ratio of the pump

and laser wavelengths. The fluorescence efficiency, r14, ls calculated by

"[rh - _-p 1 - exp - = 0.76. (13)

It Is the fi-action of pump energy absorbed In the medium that Is Integrated and

stored[61. Tp - 200_sec Is the pump pulsewldth and h - 230gsec ls the

spontaneous fluorescence llfettme. The Boltzman eonstant f. = 0.41 Is the

fraction of atoms In the 4Fap. level that are actively Involved In the stimulated

emlssion process. The power per diode array ls p = 120W and there are four of

them. The dlode arrays are from Spectra Diode Labs and are 2-bar stacks with

each bar emitting 12 mJ. From equ. (12) and (131, 18.7 mJ ls stored In the

upper lasing level In the slab.

A Fortran program has been developed to simulate the amplifier during

operation.J7] The graphical output In Fig. 4 shows that after pumping and
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prior to pulse extraction, the energy distribution across the x-y plane of the

slab possesses no dangerous hot spots and is fairly symmetric. The plot shown

is for an N = 9 crystal where t = 0.21 cm, A = 1.48 cm and A(2) = B = 1.19 cm.

The program begins by pumping the APS slab from the 4 sides with 4

collimated pump beams which are 1 cm wide by 0.21 cm high. The slab is

divided into a 40 x 40 two-dimensional array of 'pods' whose grid axes follow

the pump directions. Each pod is then assigned the resultant energy value

stored in its volume. The pumping calculation begins with Just one of the four

diode arrays. By calculating the wavefront intensity, I, as it propagates

through the slab, the absorption equation is

I, - I, -1 exp(-NI°_,AX), (14)

where Ni is the Nd ion density, on is the absorption cross section, and AX is

the pod thickness. The subtraction of each successive I, from the previous I..t

before and after each pod yields the change in Intensity, AI, per pod. The

energy deposited per pod is obtained by multiplying the pulsewidth, Tp = 200

Vs, and the pod's cross sectional area. Applying the emclencles used in equ.

(14) the energy per pod stored for stimulated emlsslon is found. A surface plot

as a result of only a single diode array is shown in Fig. 5. This procedure is

repeated for each of the 4 diode arrays by superposltion and the total energy

per pod is obtained. See Fig. 5.

For the actual amplification simulation, the pods are then combined lnto larger

units we refer to as ceils. These ceils are laid out in a grid essentially 45 °

8



different than the pod grid. This helps to simpllfy gain calculatlons for the

amplffylng pttlse and to account for the slab's double-pass feature. Using

Verdeyen[8] the small signal gain, Go, per cell Is calculated, which Is now

allgned with the internal beam trace using

G o - exp(oN_,,,). (15)

From Frantz and Nodvlk[9] the resulting energy density Is found to be

where D_at = hv/2o Is the saturation energy density. By using the output

energy density, Dout, of the pre_ous cell as the Input energy density, Dl., of the

present ceil, the change in energy, AE, can be found per cell, or

ZkE,_u - (D _ - D _,)A (17)

with A being the beam cross section. Since there ls essentiaUy a 1: I ratio of

stimulated relaxations to emitted photons, we can say that the change In the

Nd inversion density is

AE

_V2 = E_,,' (18)

where Eph ls the energy per 1064 nm photon.

be found for the cell In order to find the new Go by slmply subtracting AN 2 from

the N2 prior to the first pass. Eventually, the pulse travels the entire internal

path and all the AE's are all summed to find the final Eou t.

A new N 2 for the second pass can

It was discovered that a standard 1.0% Nd:YAG slab would not be as efficient

as one with a lower doping density. The Fortran code modeled slabs with
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densities of 0.5% Nd through I. 1%. Most of the energy is absorbed near the

pump face. Fig. 5 shows the result of a 1.0% slab pumped with 1 diode array.

The best results were obtained with 0.8% concentration. When pumping with

a single array, the energy deposited in the center pods is about 25% of those at

the pump face. After pumping from 4 sides the energy stored in the center WIU

about equal that of the face as pumped with a single diode. The addition of 4

sources allows for a symmetric and relatlvely smooth energy distribution. Fig.

4.

For our N = 9 slab, we simulated the APS Amp with an input pulse of energy El,

= 1.0 mJ, at k = 1064 nm and a pulsewidth ofT = I00 ps. Four SDL diode

array pump sources results in a total pump power of 480 W with 96 mJ of

energy. Using the above data for an N = 9 slab, an output energy of Eou t = 15. I

mJ is calculated. Our extraction efficiency, El, is found by

E, = ( (E°_-_dE_)-) l O0 = 68.1% , (19)

where Ed = 18.0 md is the total stored energy in the slab.

In high gain media, such as pulsed nitrogen lasers, cavity mirrors for optical

feedback are often not required. A coherent beam is produced by cavities

supporting only single passes in the laser materlal. These are called Amplified

Spontaneous Emission or ASE Lasers. In laslng media such as Nd:YAG where

the gain per-unlt-length is not so high, ASE is usually not a factor unless other

ASE supporting conditions exist. Due to the relatlvely long gain path length
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within the APS crystal, Amplified Spontaneous Emission might prove to be a

problem. Siegman discusses these conditions for a sample laser rod of

diameter 2a and length Lp. A worst case scenario for the APS Amplifier can be

studied by applying Slegman's methods to a 32 cm Nd:YAG rod, 0.21 cm In

diameter. This Is the equivalent 'unfolded' galn path within the slab. Let Wt2

be the stimulated transition rate of Nd inversions due to a travelling ASE pulse

of intensity I and y_ be the natural spontaneous decay rate of the inverted Nd

atoms.[10] The ratio of W,2 and Yah describes how the ASE effects the natural

inversion lifetime. From Siegman we have,

I

W12 - o-_v , (20)

where I Is the intensity of the ASE Induced pulse. The natural inversion decay

rate Is

4oL_I

V_ - _ exp(-Ea_Lv). (21)

Let 2am "-N2o be the amplification coefficient in the rod where N2 is the average

Inversion density in the slab. Dividing equ. (20) by equ. (21) yields

--= exp(2a.,Lp). (22)
Y,b

Plugging the necessary values of equ. (16) and o = 9.0 x 10 -_9 cm2[ 11] into equ.

(22) yields a ratio of 0.0022. Thus, only 0.22% of the natural spontaneous

decay ls effected by ASE at each end of the 'unfolded' rod. There are many

published values of the stimulated emission cross section, o. The value

presented here, which seems a little high, was chosen for these calculations to
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allow for a maximum ASE effect. Thus, a reduction in inversions of 0.22% is

the worst case scenario. The overlapping nature of the gain path was not

included. It is true that ASE can arise from any direction within the galn

medium where the path is long or the gain Is high. Other directional parasitlcs

were not of concern since there are no other relatively long paths foreseen

within the slab. The optical faces are designed to be sllghfly off-parallel by less

than 1° to reduce any possible Fabry-Perot cavities. This precaution need not

be of concern anyway since there are no high reflective coatings at 1064 nm.

Conclusion

A very efficient amplifier has been designed in order to maximize extraction

efficiency while keeping the number of external components to a minimum,

with the only critical external beam requirements being the input beam

diameter and its energy. At the time of this writing the crystal has been

ordered from Lightning Optical in Florida and all the mounting components

have been machined and assembled. We have already 4 diode arrays at 50

Watts each to perform tests until the 120 Watt arrays are received. Fig. 6

shows the top view of an assembled APS Amplifier with the J-mount SDL

diodes. After injecting a 100 ps, 1.0 mJ pulse, a 15.1 mJ output was

calculated with minimum ASE effects. This results in an amplifier with 11.8

dB net gain and a 68.1% extraction efficiency.

The assembled size measures 3 inches square and 2 inches high with the

crystal being mounted on the top and bottom large faces. The APS Amplifier is
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a very compact design. The initial test assembly will be water cooled with

plans to adapt to a large thermo-electric cooler. At 40 Hz and 200 bts pump

pulses, the heat dumped by a 0.8% duty cycle will not be difficult to remove

from the apparatus.

This research is part of an ongoing grant (#NSG-50333) from the National

Aeronautics and Space Administration through the American University,

Department of Physics, and is performed at the Goddard Space Flight Center,

Code 726 Photonics Branch, in Greenbelt, MD.
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Figure Captions

i. The geometrical parameters for an N = 8 APS Amplifier. The z-axis projects

out of the paper. For an N = 9 design, keeping the entry face on the right, the

exit aperture will switch to the bottom.

2. By lwaclng the beam path through the slab, the volume is symmetrically

swept through twice. The diode arrays are 1 cm in length.

3. Coating and polishing specifications for the crystal. Slab Is mounted on the

top and bottom faces which are also roughened for parasitic dampening.

4. Energy distribution plot of the APS Amplifier crystal with only I diode array.

Note: thls Is for a 1.0% Nd:YAG slab. The doping was lowered to 0.8% In order

to provide a better center-to-face ratio of deposited energy.

5. Energy distribution plot of the APS Amplifier crystal after pumping and

prior to pulse injection. The top and middle right corners have zero stored

energy since they are the entry and exit faces.

6. The top view of an assembled APS Amplifier with 4 J-type SDL arrays.

Dimensions are roughly 3" x 3" in size.
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Face

{A)

{A2)

(B)

Table I

N = Even

B=A

N = Odd

B _A(2)
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